Аннотация:
The (reduced) Keller–Segel equations modeling chemotaxis of bio-organisms are investigated. A formal derivation and partial rigorous results of the blowup dynamics are presented for solutions of these equations describing the chemotactic aggregation of the organisms. The results are confirmed by numerical simulations, and the formula derived coincides with the formula of Herrero and Velázquez for specially constructed solutions.
Образец цитирования:
S. I. Dejak, D. Egli, P. M. Lushnikov, I. M. Sigal, “On blowup dynamics in the Keller–Segel model of chemotaxis”, Алгебра и анализ, 25:4 (2013), 47–84; St. Petersburg Math. J., 25:4 (2014), 547–574
\RBibitem{DejEglLus13}
\by S.~I.~Dejak, D.~Egli, P.~M.~Lushnikov, I.~M.~Sigal
\paper On blowup dynamics in the Keller--Segel model of chemotaxis
\jour Алгебра и анализ
\yr 2013
\vol 25
\issue 4
\pages 47--84
\mathnet{http://mi.mathnet.ru/aa1344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184616}
\zmath{https://zbmath.org/?q=an:06373466}
\elib{https://elibrary.ru/item.asp?id=20730218}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 4
\pages 547--574
\crossref{https://doi.org/10.1090/S1061-0022-2014-01306-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924452661}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1344
https://www.mathnet.ru/rus/aa/v25/i4/p47
Эта публикация цитируется в следующих 6 статьяx:
Collot Ch., Ghoul T.-E., Masmoudi N., Nguyen V.T., “Spectral Analysis For Singularity Formation of the Two Dimensional Keller-Segel System”, Ann. PDE, 8:1 (2022), 5
Ray S.S., “Similarity Solutions For Keller-Segel Model With Fractional Diffusion of Cells”, Math. Meth. Appl. Sci., 44:10, SI (2021), 8379–8396
Azevedo J., Cuevas C., Henriquez E., “Existence and Asymptotic Behaviour For the Time-Fractional Keller-Segel Model For Chemotaxis”, Math. Nachr., 292:3 (2019), 462–480
Juengel A., Leingang O., “Blow-Up of Solutions to Semi-Discrete Parabolic-Elliptic Keller-Segel Models”, Discrete Contin. Dyn. Syst.-Ser. B, 24:9 (2019), 4755–4782
A. Blanchet, J. A. Carrillo, D. Kinderlehrer, M. Kowalczyk, Ph. Laurençot, S. Lisini, “A hybrid variational principle for the Keller-Segel system in R2”, ESAIM Math. Model. Numer. Anal., 49:6 (2015), 1553–1576
S. A. Dyachenko, P. M. Lushnikov, N. Vladimirova, “Logarithmic scaling of the collapse in the critical Keller-Segel equation”, Nonlinearity, 26:11 (2013), 3011–3041